
Arbres
Réf. : Chapitre 7 du cours



Pourquoi les arbres ?

• Représenter des données déjà structurées 
en arbre (livre, famille, tournoi, langage)

• Parcourir des données de manière efficace 
(arbres binaires de recherche)



Types d’arbres

• binaire, ternaire

• arbre général/forêt (niveau = distance à la racine), arbre libre

Trees

Rooted trees

Ordered trees

M-ary trees and binary trees

After developing a context with this informal discussion, we move to formal definitions

and consider representations and applications. Figure 5.20 illustrates many of the basic

concepts that we consider.

Figure 5.20. Types of trees

These diagrams show examples of a binary tree (top left), a ternary tree (top

right), a rooted tree (bottom left), and a free tree (bottom right).

A tree is a nonempty collection of vertices and edges that satisfies certain requirements.

A vertex is a simple object (also referred to as a node) that can have a name and can

carry other associated information; an edge is a connection between two vertices. A path

in a tree is a list of distinct vertices in which successive vertices are connected by edges

in the tree. The defining property of a tree is that there is precisely one path connecting

any two nodes. If there is more than one path between some pair of nodes, or if there is

no path between some pair of nodes, then we have a graph; we do not have a tree. A

disjoint set of trees is called a forest.

A rooted tree is one where we designate one node as the root of a tree. In computer

science, we normally reserve the term tree to refer to rooted trees and use the term free

tree to refer to the more general structure described in the previous paragraph. In a

rooted tree, any node is the root of a subtree consisting of it and the nodes below it.

There is exactly one path between the root and each of the other nodes in the tree. The

definition implies no direction on the edges; we normally think of the edges as all

pointing away from the root or all pointing towards the root, depending upon the

application. We usually draw rooted trees with the root at the top (even though this

convention seems unnatural at first), and we speak of node y as being below node x (and

x as above y) if x is on the path from y to the root (that is, if y is below x as drawn on

the page and is connected to x by a path that does not pass through the root). Each

node (except the root) has exactly one node above it, which is called its parent; the

nodes directly below a node are called its children. We sometimes carry the analogy to



Arbre binaire: 
représentation

• Chaque noeud contient un lien vers les fils droit et 
gauche

• Les liens null correspondent aux noeuds externes

are surprising at first; upon reflection, they are to be expected, given the abstract nature

of the definition.

The concrete representation that we use most often when implementing programs that

use and manipulate binary trees is a structure with two links (a left link and a right link)

for internal nodes (see Figure 5.21). These structures are similar to linked lists, but they

have two links per node, rather than one. Null links correspond to external nodes.

Specifically, we add a link to our standard linked list representation from Section 3.3, as

follows:

class Node 

  { Item item; Node l; Node r; 

    Node(Item v, Node l, Node r) 

      { this.item = v; this.l = l; this.r = r; } 

  } 

which is nothing more than Java code for Definition 5.1. A node consists of an item and a

pair of references to nodes (links). Thus, for example, we implement the abstract

operation move to the left subtree with a reference assignment such as x = x.l.

Figure 5.21. Binary-tree representation

The standard representation of a binary tree uses nodes with two links: a left link

to the left subtree and a right link to the right subtree. Null links correspond to

external nodes.

This standard representation allows for efficient implementation of operations that call for

moving down the tree from the root, but not for operations that call for moving up the

tree from a child to its parent. For algorithms that require such operations, we might add

a third link to each node, pointing to the parent. This alternative is analogous to a

doubly linked list. As with linked lists (see Figure 3.8), we could keep tree nodes in an

array and use indices instead of references as links, but we generally do not address such

low-level optimizations (except to note their existence) because their effectiveness is

system-dependent. We use other binary-tree representations for certain specific

algorithms, most notably in Chapter 9.

Because of all the different possible representations, we might develop a binary-tree ADT

that both encapsulates the important operations that we want to perform and separates

the use and implemen-tation of these operations. We do not take this approach in this

book because

We most often use the two-link representation.

We use trees to implement higher-level ADTs and wish to focus on those.



Arbres généraux : 
représentation

• Une liste chaînée de fils par noeud, ou bien...

• Un arbre binaire !

• Utilise la bijection fils-aîné_frère-cadet entre arbres généraux ordonnés de 
taille n+1 et arbres binaire de taille n

Property 5.4

There is a one-to-one correspondence between binary trees and ordered forests.

The correspondence is depicted in Figure 5.22. We can represent any forest as a

binary tree by making the left link of each node point to its leftmost child, and

the right link of each node point to its sibling on the right. 

Definition 5.4 A rooted tree (or unordered tree) is a node (called the root)

connected to a multiset of rooted trees. (Such a multiset is called an unordered forest.)

The trees that we encountered in Chapter 1 for the connectivity problem are unordered

trees. Such trees may be defined as ordered trees where the order in which the children

of a node are considered is not significant. We could also choose to define unordered

trees as comprising a set of parent–child relationships among nodes. This choice would

seem to have little relation to the recursive structures that we are considering, but it is

perhaps the concrete representation that is most true to the abstract notion.

We could choose to represent an unordered tree in a computer with an ordered tree,

recognizing that many different ordered trees might represent the same unordered tree.

Indeed, the converse problem of determining whether or not two different ordered trees

represent the same unordered tree (the tree-isomorphism problem) is a difficult one to

solve.

The most general type of tree is one where no root node is distinguished. For example,

the spanning trees resulting from the connectivity algorithms in Chapter 1 have this

property. To define properly unrooted, unordered trees, or free trees, we start with a

definition for graphs.

Definition 5.5 A graph is a set of nodes together with a set of edges that connect pairs

of distinct nodes (with at most one edge connecting any pair of nodes).

We can envision starting at some node and following an edge to the constituent node for

the edge, then following an edge from that node to another node, and so on. A sequence

of edges leading from one node to another in this way with no node appearing twice is

called a simple path. A graph is connected if there is a simple path connecting any pair



Définitions et propriétés

• Niveau d’un noeud = 1
+niveau de son parent (niveau 
racine = 0)

• Hauteur d’un arbre = niveau 
maximum des noeuds

• Hauteur d’un arbre binaire à N 
noeuds internes comprise 
entre log2N et N-1

larger values for any of these quantities).

Property 5.9

The internal path length of a binary tree with N internal nodes is at least N

lg(N/4) and at most N(N - 1)/2.

The worst case and the best case are achieved for the same trees referred to in

the discussion of Property 5.8 and depicted in Figure 5.23. The internal path

length of the worst-case tree is 0 + 1 + 2 + ... + (N - 1) = N(N - 1)/2. The best

case tree has (N + 1) external nodes at height no more than lg N . Multiplying

these and applying Property 5.7, we get the bound (N +1) lg N  -2N < N

lg(N/4). 

As we shall see, binary trees appear extensively in computer applications, and

performance is best when the binary trees are fully balanced (or nearly so). For example,

the trees that we use to describe divide-and-conquer algorithms such as binary search

and mergesort are fully balanced (see Exercise 5.74). In Chapters 9 and 13, we shall

examine explicit data structures that are based on balanced trees.

These basic properties of trees provide the information that we need to develop efficient

algorithms for a number of practical problems. More detailed analyses of several of the

specific algorithms that we shall encounter require sophisticated mathematical analysis,

although we can often get useful estimates with straightforward inductive arguments like

the ones that we have used in this section. We discuss further mathematical properties

of trees as needed in the chapters that follow. At this point, we are ready to move back

to algorithmic matters.



Arbres : implantation
• enracine : info x arbre x arbre → arbre

•type arbre is access noeud;

• Arbre binaire :
type noeud is record
  info : type_info;
  fils_gauche, fils_droit : arbre;
end record;

• Arbre général :
type noeud is record
  info : type_info;
  fils_aine, frere_cadet : arbre;
end record;



Arbres : exploration en 
profondeur

• explore_et_traite (arbre_vide) =

 traitement_vide

• explore_et_traite (enracine (inf, ag, ad)) =

 combinaison (traitement(inf),

 
 explore_et_traite(ag),

 
 explore_et_traite(ad))



Arbres : exploration en largeur
• Initialisation :

file := racine(arbre)

• Boucle d’exploration :
tant que file /= file-vide repeter

 oter-en-tete (file, x);

 traiter (x);

 pour chaque fils y de x repeter

 
 inserer-en-queue (file, y);

 fin pour
fin tant que

• Complexité en temps en O(N)

• Taille mémoire nécessaire = taille du dernier niveau ≤ (N+1)/2

• Possibilité de remplacer oter-en-tete et inserer-en-queur par des fonctions 
adaptées pour effectuer un parcours avec un ordre de priorité différent : 
selectionner-et-retirer et inserer-dans-ensemble

• Exercice : quelles fonctions “sélectionner” et “insérer” pour faire un 
parcours en profondeur ?



Retour sur les N reines
subtype pos_etendu is natural range 0..n ;
subtype pos is pos_etendu range 1..n ;
ligne : array(pos) of pos_etendu := (others => 0) ;

procedure Reine(i : pos_etendu) is
-- entree : i reines sont placées, mémorisées dans le tableau ligne
-- au retour, toutes les solutions complétant cette solution partielle
--   sont imprimées
begin
  if i=n then
    -- toutes les reines sont placées, on est à une feuille de l’arbre de recherche
    imprimer(ligne) ;
    return ;
  end if
  -- exploration des différentes possibilités
  k := i+1 ;
  for j in 1..n loop
    if position_libre (k,j) then
      ajouter_une_reine (k,j) ;
      reine(k) ;
      enlever_une_reine(k,j) ;
    end if ;
  end loop ;
end Reine ;

procedure ajouter_une_reine(k,j :pos) is
begin
  ligne(k) := j ;
end ajouter_une_reine ;

procedure retirer_une_reine(k,j :pos) is
begin
  ligne(k) := j ;
end retirer_une_reine ;

-- programme principal :
reine(0) ;

• Le parcours se fait-il en largeur ? en profondeur ?
• Comment implanter les heuristiques de recherche ?


